The quarterly production of pine lumber, in millions of
board feet, by Northwest lumber since 1998 is:
Productions in
different quarters of several years
Year
|
Quarter
|
Production
|
Year
|
Production
|
Sales
|
Year
|
Quarter
|
Production
|
1998
|
Winter
|
90
|
2001
|
Winter
|
201
|
2004
|
Winter
|
265
|
Spring
|
85
|
Spring
|
142
|
Spring
|
185
|
|||
Summer
|
56
|
Summer
|
110
|
Summer
|
142
|
|||
Fall
|
102
|
Fall
|
274
|
Fall
|
333
|
|||
1999
|
Winter
|
115
|
2002
|
Winter
|
251
|
2005
|
Winter
|
282
|
Spring
|
89
|
Spring
|
165
|
Spring
|
175
|
|||
Summer
|
61
|
Summer
|
125
|
Summer
|
157
|
|||
Fall
|
110
|
Fall
|
305
|
Fall
|
350
|
|||
2000
|
Winter
|
165
|
2003
|
Winter
|
241
|
2006
|
Winter
|
290
|
Spring
|
110
|
Spring
|
158
|
Spring
|
201
|
|||
Summer
|
98
|
Summer
|
132
|
Summer
|
187
|
|||
Fall
|
248
|
Fall
|
299
|
Fall
|
400
|
Note: Add last three digits
of your ID with number of Productions
i)
Develop a seasonal index for each quarter and
interpret.
ii)
Project the production for 2007 and also find the base
year production.
iii)
Plot the original data and Decentralized data and
interpret.
Computations needed for specific seasonal indexes
Year
|
Quarter(Q)
|
Production + ID(047)
|
4Q total
|
4Q moving average
|
Centered moving average
|
Specific seasonal
|
1998
|
winter
|
137
|
||||
spring
|
132
|
521
|
130.25
|
|||
summer
|
103
|
546
|
136.5
|
133.375
|
0.772258669
|
|
Fall
|
149
|
550
|
137.5
|
137
|
1.087591241
|
|
1999
|
winter
|
162
|
555
|
138.75
|
138.125
|
1.172850679
|
spring
|
136
|
563
|
140.75
|
139.75
|
0.973166369
|
|
summer
|
108
|
613
|
153.25
|
147
|
0.734693878
|
|
Fall
|
157
|
634
|
158.5
|
155.875
|
1.007217322
|
|
2000
|
winter
|
212
|
671
|
167.75
|
163.125
|
1.299616858
|
spring
|
157
|
809
|
202.25
|
185
|
0.848648649
|
|
summer
|
145
|
845
|
211.25
|
206.75
|
0.701330109
|
|
Fall
|
295
|
877
|
219.25
|
215.25
|
1.370499419
|
|
2001
|
winter
|
248
|
889
|
222.25
|
220.75
|
1.123442809
|
spring
|
189
|
915
|
228.75
|
225.5
|
0.838137472
|
|
summer
|
157
|
965
|
241.25
|
235
|
0.668085106
|
|
Fall
|
321
|
988
|
247
|
244.125
|
1.314900154
|
|
2002
|
winter
|
298
|
1003
|
250.75
|
248.875
|
1.197388247
|
spring
|
212
|
1034
|
258.5
|
254.625
|
0.832596956
|
|
summer
|
172
|
1024
|
256
|
257.25
|
0.668610301
|
|
Fall
|
352
|
1017
|
254.25
|
255.125
|
1.379715826
|
|
2003
|
winter
|
288
|
1024
|
256
|
255.125
|
1.128858403
|
spring
|
205
|
1018
|
254.5
|
255.25
|
0.803134182
|
|
summer
|
179
|
1042
|
260.5
|
257.5
|
0.695145631
|
|
Fall
|
346
|
1069
|
267.25
|
263.875
|
1.311226907
|
|
2004
|
winter
|
312
|
1079
|
269.75
|
268.5
|
1.162011173
|
spring
|
232
|
1113
|
278.25
|
274
|
0.846715328
|
|
summer
|
189
|
1130
|
282.5
|
280.375
|
0.674097191
|
|
Fall
|
380
|
1120
|
280
|
281.25
|
1.351111111
|
|
2005
|
winter
|
329
|
1135
|
283.75
|
281.875
|
1.167184035
|
spring
|
222
|
1152
|
288
|
285.875
|
0.776563183
|
|
summer
|
204
|
1160
|
290
|
289
|
0.705882353
|
|
Fall
|
397
|
1186
|
296.5
|
293.25
|
1.353793691
|
|
2006
|
winter
|
337
|
1216
|
304
|
300.25
|
1.122398002
|
spring
|
248
|
1266
|
316.5
|
310.25
|
0.799355359
|
|
summer
|
234
|
|||||
Fall
|
447
|
Seasonal index for quarter
(winter, spring, summer& fall)
Year
|
Winter
|
Spring
|
Summer
|
Fall
|
||
1998
|
0.772259
|
1.087591241
|
||||
1999
|
1.1728507
|
0.973166369
|
0.734694
|
1.007217322
|
||
2000
|
1.2996169
|
0.848648649
|
0.70133
|
1.370499419
|
||
2001
|
1.1234428
|
0.838137472
|
0.668085
|
1.314900154
|
||
2002
|
1.1973882
|
0.832596956
|
0.66861
|
1.379715826
|
||
2003
|
1.1288584
|
0.803134182
|
0.695146
|
1.311226907
|
||
2004
|
1.1620112
|
0.846715328
|
0.674097
|
1.351111111
|
||
2005
|
1.167184
|
0.776563183
|
0.705882
|
1.353793691
|
||
2006
|
1.122398
|
0.799355359
|
||||
total
|
9.3737502
|
6.718317498
|
5.620103
|
10.17605567
|
||
Seasonal mean
|
1.1717188
|
0.839789687
|
0.702513
|
1.272006959
|
total of seasonal mean=
|
3.986028327
|
Correction Factor
|
1.0035052
|
|||||
Adjusted
|
1.1758258
|
0.842733286
|
0.704975
|
1.276465549
|
total of adjusted =
|
4
|
Seasonal index
|
117.5
|
84.2
|
70.4
|
127.6
|
Interpretation
·
Production in winter is 17.5% more than the
annual average production.
·
Production in spring is 15.8% less than the
annual average production.
·
Production in summer is 29.6% lower than the
annual average production.
·
Production in fall is 27.6 % greater than the
annual average production.
Year
|
Quarter(Q)
|
Production
|
SI
|
Time (t)
|
Decentralized Production Y)
|
1998
|
winter
|
137
|
1.175
|
1
|
116.5957447
|
spring
|
132
|
0.842
|
2
|
156.7695962
|
|
summer
|
103
|
0.704
|
3
|
146.3068182
|
|
Fall
|
149
|
1.276
|
4
|
116.7711599
|
|
1999
|
winter
|
162
|
1.175
|
5
|
137.8723404
|
spring
|
136
|
0.842
|
6
|
161.52019
|
|
summer
|
108
|
0.704
|
7
|
153.4090909
|
|
Fall
|
157
|
1.276
|
8
|
123.0407524
|
|
2000
|
winter
|
212
|
1.175
|
9
|
180.4255319
|
spring
|
157
|
0.842
|
10
|
186.4608076
|
|
summer
|
145
|
0.704
|
11
|
205.9659091
|
|
Fall
|
295
|
1.276
|
12
|
231.1912226
|
|
2001
|
winter
|
248
|
1.175
|
13
|
211.0638298
|
spring
|
189
|
0.842
|
14
|
224.4655582
|
|
summer
|
157
|
0.704
|
15
|
223.0113636
|
|
Fall
|
321
|
1.276
|
16
|
251.5673981
|
|
2002
|
winter
|
298
|
1.175
|
17
|
253.6170213
|
spring
|
212
|
0.842
|
18
|
251.7814727
|
|
summer
|
172
|
0.704
|
19
|
244.3181818
|
|
Fall
|
352
|
1.276
|
20
|
275.862069
|
|
2003
|
winter
|
288
|
1.175
|
21
|
245.106383
|
spring
|
205
|
0.842
|
22
|
243.4679335
|
|
summer
|
179
|
0.704
|
23
|
254.2613636
|
|
Fall
|
346
|
1.276
|
24
|
271.1598746
|
|
2004
|
winter
|
312
|
1.175
|
25
|
265.5319149
|
spring
|
232
|
0.842
|
26
|
275.5344418
|
|
summer
|
189
|
0.704
|
27
|
268.4659091
|
|
Fall
|
380
|
1.276
|
28
|
297.8056426
|
|
2005
|
winter
|
329
|
1.175
|
29
|
280
|
spring
|
222
|
0.842
|
30
|
263.6579572
|
|
summer
|
204
|
0.704
|
31
|
289.7727273
|
|
Fall
|
397
|
1.276
|
32
|
311.1285266
|
|
2006
|
winter
|
337
|
1.175
|
33
|
286.8085106
|
spring
|
248
|
0.842
|
34
|
294.5368171
|
|
summer
|
234
|
0.704
|
35
|
332.3863636
|
|
Fall
|
447
|
1.276
|
36
|
350.3134796
|
So the production equation Y'= 129.42 – 5.5896 * t
Projection of the
production for 2007
Plot of original and
deseasonalized Production
Interpretation
The graph of original data
showing a constant fluctuation which cannot provide any meaningful information or
idea about improvement or diss-improvement of production but the graph of
De-seasonal data provides us a meaningful clarification about production whether
it is improving or demolishing.
No comments:
Post a Comment